If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+216x+6=0
a = -16; b = 216; c = +6;
Δ = b2-4ac
Δ = 2162-4·(-16)·6
Δ = 47040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47040}=\sqrt{3136*15}=\sqrt{3136}*\sqrt{15}=56\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(216)-56\sqrt{15}}{2*-16}=\frac{-216-56\sqrt{15}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(216)+56\sqrt{15}}{2*-16}=\frac{-216+56\sqrt{15}}{-32} $
| (q-4)*3=30 | | 2r=3.1=1.7 | | -2x+-8=40 | | f/4-10=-7 | | -35=7/8v | | 0=-16x2+216x+6 | | 6(2x+18)=54 | | 3^(x+2)-3^x=72 | | 4x+1=-2(2x+3) | | 2x+2.5=4.8 | | -(7-8p)-5(p+3)=-40 | | 6(2x+18=54 | | 152=8x+6+10x+2 | | -11y=363 | | 0.0(2x-6)=1.8(7x+24) | | 5p=25,p= | | -2/w/3=4 | | 30/42=35/x | | x−6=50 | | g/16=21 | | 8x+3+8x+3=132 | | 42/30=x/35 | | -2b=8-3b | | h+12.2=−12.2h= | | –2w=–w+9 | | 0.11x=44 | | x/200=75/100 | | 3x=413 | | 7f=8f-7 | | 24=4(1+2b)-6(1-3b) | | 8+2/7x=20 | | 16v=816 |